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In a recent paper Doshi, Daiya & Gill (1978) showed that the value of Taylor’s longi- 
tudinal diffusivity D for laminar flow in a channel of rectangular cross-section of 
breadth u and height b is about 8 0 ,  for large values of the aspect ratio a/b,  where Do 
is the value of the longitudinal diffusivity obtained by ignoring all variation across 
the channel. This superficially surprising result is confirmed by an independent method, 
and is shown to be caused by the boundary layers on the side walls of the channel. 
The primary purpose of the paper, however, is to consider the value of D in turbulent 
flow in a flat-bottomed channel of large aspect ratio, for which arguments based on 
physics are adduced in support of the formula D c Do[ 1 + B] [ 1 - y(b/u)], where B and 
y are positive constants independent of b/u. It is shown that this result is consistent 
with laboratory experiments by Fischer (1966). The paper concludes with a discussion 
of the practical effects of aspect ratio on longitudinal dispersion in channels whose 
cross-section is approximately rectangular. 

1. Introduction 
Taylor (1953, 1954) showed that the spreading of a passive contaminant along the 

axis of a pipe or channel of uniform cross-section can eventually be described by a 
diffusion equation with a longitudinal diffusivity D. The value of D depends on 
whether the flow is laminar or turbulent, but all calculations have given results in 
accordance with the formulai 

W2L2 
DCC- K 

In (1 .1)  W is the discharge velocity, L is a length characteristic of the dimensions of 
the cross-section and K ,  which has the dimensions of a diffusivity, is a measure of 
the intensity of the lateral mixing of contaminant. Thus, in laminar flow, K is taken as 
the molecular diffusivity K ,  while in turbulent flow it is proportional to hw,, where 
w* is the shear velocity and h is a length characteristic of the smallest dimensions of 

t In (1 .1)  a (normally small) additive contribution arising from the direct effect of diffusion 
in the longitudinal direction has been neglected, as it will be, for simplicity, throughout this 
paper. The value of this contribution is unaffected by the aspect ratio of the channel. 
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the cross-section. (Thus, in this case, K is of the order of the transverse eddy diffusivity 
if this is assumed to exist.) 

The purpose of this paper is to investigate the value of D when the cross-section 
of the pipe or channel has one dimension much greater than the other. That there is 
EL problem worth investigating is clear when one considers the value of D for laminar 
flow in a pipe of elliptical cross-section of area S. In  this case (Aris 1956) 

W2S 5 + 14r2 + 5r4 
D = - (  48nK 12(r+r3) 

where r is the ratio of the minor axis to the major axis. For r = 1,  the cross-section is 
a circle, and (1.2) reduces to Taylor’s (1953) result, namely 

However, for r < 1 the ellipse has a large aspect ratio, and (1.2) shows that 

D 1  
- E - B l .  Do 12r 

Much practical interest in longitudinal dispersion arises (see e.g. chap. 5 of Fischer 
et al. 1979) because of its importance in flows like those occurring in rivers, estuaries 
and canals. The prime concern of the present paper is with the effect of aspect ratio 
on longitudinal dispersion in channels whose cross-sections are essentially rectangular, 
that is those whose depths are approximately constant over the bulk of the cross- 
section. It will be seen in Q 3 that these effects arise because of boundary layers on the 
side walls of the channel. Other essentially geometrical effects of aspect ratio occur 
when the depth of the channel is not approximately constant, as in the elliptical case 
above. While such cases will not be considered further here, it should be noted that 
relevant calculations are given by Smith (1980, 1981 b )  for several shapes of channel, 
including those with parabolic and triangular-shaped cross-sections, 

2. Laminar flow through a channel of rectangular cross-section 
Consider the value of D for laminar flow through a conduit of rectangular cross- 

section with breadth a and height b as shown in figure 1.  It will be supposed throughout 
that a > b, with primary interest in the case a B b. The origin of axes is taken in the 
bottom left-hand corner, with x measured along the breadth. Under an axial pressure 
gradient - G ,  the axial component of fluid velocity satisfies 

a2w a2w c 
ax2 ay2 ,d 
-+-=-- 

with boundary conditions 
w =  0 a t  x=O,a;  y =  0 , b .  

By symmetry the results obviously apply also to flow in an open channel of breadth 
a and depth h = i b .  

Consider first the case of an infinitely wide conduit in which there is no dependence 
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on x, and the conditions a t  x = 0, a in (2 .2 )  are deleted. The axial component of velocity 
w o ( y )  and its mean with respect to y ,  W,, then satisfy 

G Gb2 
w - - ( b y - y 2 ) ;  w-- 

O - 12p O - 2 p  

Let Do be the value of the longitudinal diffusivity in this case. I ts  value has been 
calculated on many occasions (see e.g. Dewey & Sullivan 1979) with the result 

This is consistent with ( 1 . 1 )  with L proportional to b. 
Now consider the case when a/b is not infinite. The solution of (2 .1 )  and (2 .2 )  can 

be found as a Fourier series in either x or y .  The most convenient form for present 
purposes is 

( 2 . 5 )  
4Gb2 cosh [nm ( x  - &a.)/b] nny  

sin b, 
w ( z ’ ~ )  = w ~ ( ~ ) - ~  l L z d  n3cosh [nra /2b]  

whose cross-sectional mean W is easily found to satisfy 

W = W 0 1 - - -  ( 1;; (s) tanh [nna /2b] )  
n odd n5 

The value of D in this case has been calculated by Doshi, Daiya & Gill (1978) .  To 
confirm their result, D was calculated both by means of Taylor’s (1953) method, and 
by means of Dewey & Sullivan’s (1979) method (which is based on constructing the 
probability density function of the cross-sectional position of a fluid molecule). 
Because of the zero-flux boundary condition on the distribution of concentration, the 
velocity profile wfx, y )  in (2 .5 )  has to be re-expanded in a double Fourier series in 
cos (pnx la)  cos (qnylb) .  Accordingly the calculation of D ,  although straightforward 
in principle, is rather complicated and details are given in the appendix. The results 
of all three calculations agree and the final exact result is given by (A 10) and (A 1 1 ) .  

From this exact result, the value of D when a 9 b can be obtained in the form 

D = D,[I + A ]  [ 1 - O ( b / a ) ] ,  (2 .7 )  

where Do is the parallel-plate value of D given in (2 .4 ) ,  and A is a numerical constant - 
independent of b/a - given by 

( n-5)2 ,N 6.9512, 
211x 315 

A =  
T1O nodd 

12-2 
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I I 
0.5 I *  

bla 
FIGURE 2. The variation of DID,, with b/a for laminar flow through the channel of rectangular 
cross-section. The open circles ( 0) show values calculated directly from (A 10) and (A 1 l ) ,  
the crosses ( x ) show values calculated by the simulation technique of Sullivan (1971) and the 
straight line is that obtained from (2.7) and (2.8). 

where table 23.3 of Abramowitz & Stegun (1964) has been used to obtain the numerical 
value of A .  Figure 2 shows the variation of D with b/a, and confirms that (2.7) is 
correct for b 5 0 . 2 ~ .  

3. Physical explanation for the value of D 
It is at first sight surprising, perhaps, that, as alb + co, D does not approach the 

value Do given in (2.4), obtained by ignoring all variations across the conduit, but 
approaches a value of about 80,. After obtaining the value of D, Doshi et al. (1978) 
showed that the factor A in (2.7) could be obtained using a calculation procedure 
proposed by Fischer ( 1  966). In this procedure, designed originally for use with turbulent 
flows in broad natural streams, it is assumed that variations of the velocity over the 
depth can be ignored, in the sense that w(x, y) can be replaced by w(x), its mean with 
respect to y. Then it is proposed that D can be determined by Taylor’s (1953) method, 
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given in the appendix, with all variation with y of the distribution of concentration 
ignored. As noted above, this procedure gives, for the present geometry, D -+ AD,  
as a/b -+ 00 and is therefore about 124 yo less than the correct value of (1 + A )  Do; 
this is nevertheless a marked improvement on the superficially obvious assumption 
that D -+ Do as alb -+ co ! 

While the success of Pischer’s procedure in predicting the value of A clearly shows 
the importance of lateral velocity variations, it is not obvious physically how these 
will affect the value of DID,, or even its order of magnitude, for more complicated 
geometries with large aspect ratios. Thus, while the length L in (1.1) is proportional 
to b in the present case, Fischer’s proposal would seem to allow the possibility that, 
in other circumstances, it may be proportional to e.g. a or (ab)*. I n  view of the wide- 
spread occurrence of flows with large aspect ratios, it seems to be important to under- 
stand more about the physical reasons for the value of D/Do in (2.7). 

When a $ b, w(x, y) - w,(y) is, according to (2.5)) exponentially small everywhere in 
the cross-section except in layers of thickness IS  adjoining the side walls x = 0 and 
x = a. It is obvious physically, and also mathematically from (2.5), that ISis of order b. 
Without loss of generality 6 can be chosen as equal to b, since w(x, y )  x 0.96wO(y) 
when x = b and x = a -  b. Also, from (2.6), it follows that 

W x Wo[l - 0*63b/a] ( a  9 b). 
Now define w(x, y) by 

4x9 y) = w(x, y) - w. 
It follows that, to an adequate approximation, 

W ( X ,  y) M [w,(y) - WO] + 0 * 6 3 ( b / ~ )  W, (b < x < a - b). (3.3) 

By definition, w(x ,  y) has zero mean over the whole cross-section. Therefore 

w ( x ,  y) x - [(a- 2b)/a] Tyov(x, y) (0  < x < b, a - b < x < a) ,  (3.4) 

where 1: j:v(x,  y) dxdy x 0.63b2, (3.5) 

so that v(x,  y) is of order 1. 
Consider a contaminant molecule released from x = X ,  y = Y ,  z = 0 a t  t = 0. With 

respect to axes moving with the discharge velocity W ,  let its axial component of 
velocity a t  time t after release be Q ( t ; X ,  Y ) .  By extending Taylor’s (1921) classic 
analysis to the case of an initial distribution of contaminant molecules that is uniform 
over z = 0, it has been shown (Saffman 1960; Chatwin 1977; Dewey & Sullivan 1979) 
that 

D = L / o m d t j J Q ( O ; X ,  ab Y ) Q ( t ; X ,  Y ) d X d Y ,  (3.6) 

where the overbar denotes an ensemble mean. Dewey & Sullivan (1979) showed further 
that, in practice, (3.6) is the same as 

ab j o m d t f S . ( X ,  Y ) Q ( t ; X ,  Y ) d X d Y ,  (3.7) 

where w(x ,  y) is given by (3.2), (3.3) and (3.4)) and, as explained in an earlier footnote, 
a small additive contribution to D has been ignored in passing from (3.6) to (3.7). 

Denote by p ( x ,  y, t ;  X ,  Y )  the probability density function of t,he position in the 
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cross-section at time t of a contaminant molecule released from x = X, y = Y at t = 0. 
Then Q ( t ;  X ,  Y )  in ( 3 . 7 )  satisfies (Chatwin 1977; Dewey & Sullivan 1979) 

Dewey & Sullivan showed how p ( x ,  y , t ; X ,  Y )  could be determined exactly for the 
present geometry, but that result is not needed here. 

First of all, it is obvious that each contaminant molecule eventually forgets where 
it started from. Thus, for all X and Y ,  

limp(z,y,t;X, Y )  = l / a b .  
t+m 

(3 .9)  

But a contaminant molecule forgets about its value of Y in a time of order b 2 / K ,  much 
more quickly than it forgets about its value of X .  Hence 

(3 .10)  

where p ( x ,  t ;  X) w l / a  ( t  2 (3 .11)  

Now consider the dependence of Q ( t ; X ,  Y ) ,  defined in ( 3 . Q  on t for a molecule 
released in the central region, so that b < X < a - b .  It follows from (3 .3 ) ,  (3.10) and 
(3 .11)  that 

(3 .12)  1 4x9 Y )  
Q ( t ;  X, Y )  E 0*63(b /u )  W, 

(0 < t < b 2 / K ) ,  

( b 2 / K  5 t 5 (a - 2 b ) 2 / ~ ) ,  

( 0  ( t  2 as// .) .  

The basic physical reason behind these results is that it takes, on the average, a time 
of order (a  - 2 b ) 2 / ~  for a typical contaminant molecule released in the central region 
to reach, and begin to sample, the layers of thickness b adjoining the side walls. In  
the meantime, its average axial velocity is of order 0*63(b /a )  W,, the non-zero discharge 
velocity in the central region. From (3 .7 ) ,  it now follows that the contribution to D 
from molecules released in the central region is of order 

ab K 
(3 .13)  

where a, and a2 are constants of order unity. The first term comes from the first time 
interval in (3 .12) ,  and hence is of order Do. This contribution can therefore be written 

Do(1 + A , )  [ I -  W / a ) l ,  (3.14) 

where A ,  is a constant of order unity whose value is determined predominantly by 
the second term in (3 .13) ,  therefore by the small non-zero discharge velocity which a 
typical contaminant molecule has for t 5 (a - 2 b ) 2 / ~ .  

An entirely similar analysis to the above can be carried out for molecules released 
in the layers of thickness b adjoining the side walls. The intermediate results corres- 
ponding to (3 .12)  need not be given, but the contribution to D for such molecules is 
found to be of order 

(3 .15)  
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where PI and P2 are constants of order unity. The second term is of order Do and 
comes from times t satisfying b2/K 5 t 5 ( U - ~ ) ~ / K ,  during which the molecule is 
likely to have wandered away from the side layers into the central region where its 
axial velocity is non-zero. Then (3.15) reduces to 

DoAJ1-  O(b/a)l, (3.16) 

where A ,  is a constant of order unity. The sum of the contributions in (3.14) and (3.16) 
gives a result consistent with (2.7) where A = A ,  + A,. 

The preceding analysis makes clear that the reason why D is significantly greater 
than Do, but of the same order, is that the presence of the side layers causes the mean 
axial velocity in the central region to be greater than the discharge velocity, by an 
amount proportional to b/a. 

4. Turbulent flow in rectangular channels 
Practically, the value of D in turbulent flows is, of course, much more important 

than its value in laminar flows. However, the physical arguments in $ 3  are also 
applicable in turbulent flows. Provided the Reynolds number R, = w, b/v, where w* 
is the shear velocity, is sufficiently large, the effects of the side walls on turbulent flow 
in a wide rectangular channel will be confined to layers of thickness of order b, just 
as in laminar flow. The argument in $ 3 can therefore be applied with K replaced by 
w, b. Thus 

where B and y are constants, and Do is the value of D when variations of mean pro- 
perties of the turbulence across the channel are ignored. 

As discussed in for example Elder (1959), Chatwin (1971)) Sullivan (1971) and 
Fischer (1973)) the precise value of Do depends on many factors such as the value of 
R,, the nature of the walls and the value of the Schmidt (or Prandtl) number, and 
definitive knowledge of its dependence on such factors is not yet available. However, 
this precise value of Do is not of primary importance in the present paper. 

For a given cross-sectional shape, the ralues of the constants B and y in (4.1) will 
be dependent on the value of R, and the roughness characteristics of the walls. How- 
ever, the principle of Reynolds-number similarity (Monin & Yaglom 1971, p. 299) 
suggests that, in a smooth-walled conduit, B and y will be universal constants for 
high enough R,. The dependence of these constants on roughness is more difficult to 
assess. While secondary flows are not considered explicitly in the arguments in this 
paper, they are expected to be confined to side-wall layers and, therefore, will not 
affect the structure of (4.1). 

For reasons that will be discussed in $5,  very few measurements of D exist that 
enable the validity of (4.1) to be examined. However some confirmation that (4.1) is 
worth more rigorous testing can be obtained using data from Fischer (1966), taken 
from an open channel whose cross-section was a trapezium. The width of the trapezium 
could be varied and its sides were artificially roughened with stones. A summary of 
the results from 6 separate series (2800, 2900, 3000, 3100, 3200, 3400) each consisting 
of at  least 7 runs is given in table 1.  It should be noted that: 

(a )  the values of D quoted are those obtained by Fischer using his ‘diffusive- 
transport ’ method; 

D M Do[1 +B1[1 -y (b /a) l ,  (4.1) 
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h - 
Series h (cm) a fcm) W (cm/s) a 

2800 3.5 38.1 25.1 0.092 
2900 4-7 38.1 45.4 0.123 
3000 3.5 38.1 45.1 0.092 
3100 3.5 31-7 44.4 0.110 
3200 2.1 31.7 45.3 0.066 
3400 2.1 19.1 46.1 0.110 

TABLE 1. Data from Fischer (1966) for roughened open channels with 
trapezoidal cross-sections 

Dw, - 
W2h 

0.616 
0.522 
1.157 
0.603 
1.850 
0.864 

t 

I \ I  hlfl 
0.05 0.10 0.15 

FIGURE 3. The variation of Dw,/ WZh with h/a for experiments by Fischer 
(1966) in an open channel of trapezoidal cross-section. 

( b )  the values of a are the bottom widths of the trapezoidal cross-section; 
( c )  because of the atypically high measured values of w* caused by the roughening, 

the values of Dw,/ W2h in table 1 were obtained using a w* satisfying w* = 0.044 W ,  
this being the average result from other series (1200, 1300, 1400, 2700) of tests by 
Fischer in channels without artificial roughening. 

As shown in figure 3, the trend of the results in table 1 is consistent with (4.1), at 
least insofar as dependence on h/a is concerned. It seems therefore that the arguments 
in 5 3, while not applying in detail to Fischer’s experiments because of the trapezoidal 
geometry and artificial roughening, do give the correct orders of magnitude for assess- 
ing the dependence of D on aspect ratio. However the value of Do for Fischer’s results, 
that is the longitudinal diffusivity that would be obtained in a calculation ignoring 
mean lateral variations, cannot be assessed because it would have to incorporate the 
artificially increased intensity of the transverse mixing and is therefore neither Elder’s 
(1959) value nor as measured in other tests by Fischer without artificial roughening. 
However, it has been implicitly assumed in saying that figure 3 is consistent with (4.1) 
that the unknown value of Do is proportional to W2h/w,. 
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The straight line in figure 3, drawn by eye as a reasonable fit, has the approximate 
equation 

For the reasons given above, the numbers J$ and 7 depend on the shape of the cross- 
section and the roughness characteristics. It should also be recorded that the point 
in figure 3 that is furthest from the straight line (4.2) is that for the series (2800) with 
the lowest value of R,  ( N 390). 

5. Some remarks on the evolution of the dispersion with time 
It is now well known (e.g. Chatwin 1971, 1973; Sullivan 1971; Dewey & Sullivan 

1977; Fischer et al. 1979) that Taylor's original (1953) analysis is inadequate for dealing 
with most practical problems involving longitudinal dispersion. This is because, in 
practice, the times since release for which information is required are much less than 
those needed for the Taylor prescription, involving a time-independent longitudinal 
diffusivity D, to apply. I n  other words (Chatwin 1972), Taylor's result is equivalent 
to the assumption that the distribution of concentration is a Gaussian function of 
distance z along the axis of the pipe or channel, and most observed distributions 
exhibit marked deviations from Gaussianity. This is true, for example, for the profiles 
of concentration in the experiments of Fischer (1966) from which the data in table 1 
were obtained. Caution is therefore needed before using the results of these, and 
most similar, experiments to predict absolute values of 0.t 

The time needed for Taylor's analysis t o  apply in a channel with large aspect ratio 
is of order a 2 / K  in laminar flow, and of order a2/bw, in turbulent flow. In  either case, 
the time satisfies 

"=*(EJ, b2 

where K is defined following (1.1). For the geometry considered in $ 2 ,  let Z( t ;  X ,  Y )  
denote the axial co-ordinate a t  time t with respect to axes moving with the discharge 
velocity W of a contaminant molecule released from 2 = X ,  y = Y ,  z = 0 at t = 0. 
Thus 2 = Q, where Q(t;  X ,  Y )  is the velocity introduced in § 3, and, for all X and Y ,  

1 d -  
- - 2 2 + D  
2 at 

as t + 00 (Taylor 1921). The value of $d.@/dt has been given by Doshi et al. (1978), 
and has also been calculated by the authors using the method of Dewey & Sullivan 
(1979). Figure 4 shows the values of Kt/b2 for which $ d B / d t  = 0.9OD and 0 .950 .  
These are in agreement with (5.1). 

Complementary discussions to the above have been given by Fischer (see chaps 4 
and 5 of Fischer et al. 1979) and by Doshi et al. (1978). The argument may have to be 
amended when the flow is oscillatory (see e.g. Allen 1982). In  any case, when (5.1) is 
not satisfied, methods different from Taylor's must be used, such as those proposed 
by Chatwin (1970, 1980) and Smith (1981a). 

t For the same reason, there is little data available at present with which to test (4.1). 
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FIGURE 4. The values of K t / b 2  for which i d z / d t  = 0.900 (0 )  and 0.950 (0). The stiaight 
lines are of slope -2, and show that the calculated points are consistent with (5.1). 

The authors wish to thank D. Tremane who was engaged to do the computing. 
Paul J. Sullivan received financial support from the National Science and Engineering 
Research Council of Canada. 

Appendix. The value of D for laminar flow in a rectangular conduit 
For the flow considered in Q 2, the distribution of concentration C ( x ,  y, z, t )  satisfies 

ac ac 
at a x ’  

Kv2C = -+W- 

where w(z, y) is given in (2.5). The boundary conditions on C include 

- = 0 (x = O,a), % =  0 (y = 0,b) .  
aC 
ax 34 

Taylor (1953) noted that (A 1)  has an exact solution of the form 

c = a(z - Wt) +a f (5, y), (A 3) 

where 01 is a constant, and W is the discharge velocity given in (2.6). Substitution of 
(A 3) in (A 1)  and (A 2) gives 

a 2 f  ay W -  w 
ax2 ay2 K 
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Taylor showed that D is related to f by the equation 

D = -A j; j; (w- W ) f d x d y .  

In view of (A 5 )  it is natural to expand f and w - W in Fourier series in 

cos (pnxlf-4 cos ( q n y l b ) ,  

where the symmetry of the flow requires that p and q are even. Thus, write 

PTX P Y  Pnx COST, P Y  ( A  7 )  w - w =  q,cos-+ W,,cos-+ c x q q c o s T  
a qeven b peven qeven p even 

2 2  2 2  2 2  2 2  

Substitution of (A 7)  and (A 8) in (A 4) gives 

Hence, from ( A  6 ) ,  

The coefficients Wpq are easily obtained from (2.5) using the normal integral formulae 
for Fourier coefficients. The results are 

32Gab3 tanh (nna /2b)  c W =-- 
PO pn5 noddn3(nza2 +p2b2 ) '  

64Gab3 tanh (nna /2b)  1 
PP pn5 %odd n(n2-q2) n2u2+p2b2' z w =-- 

Substitution of ( A  11) in ( A  10) gives the value of D, and it has been checked that this 
agrees with the result in Doshi et al. (1978).  The main concern of this paper is with the 
value of D when b < a. Under these circumstances, (A 11) can be approximated by 

Substitution into ( A  10) shows that the terms involving W,, ( p q  > 0 )  give a contribu- 
tion to D of order Do(b/a)2 ,  which may therefore be neglected to highest order. The 
summation involving W,, gives Do, while that involving W,, gives AD,, where the 
value of A is given in (2.8). Thus (2.7) is obtained. It should be noted that the term 
AD, comes from the Fourier series across the wide dimension of the channel, consistent 
with the arguments in § 3. 
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